ACTIVE TARGET- TIME PROJECTION CHAMBER

ATTPC
Saul Beceiro-Novo
National Superconducting Cyclotron Laboratory, MSU
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

$Z = v_{\text{drift}} t$

tracking medium

electron amplification

E
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

\[Z = v_{\text{drift}} t \]
Active-Target Time-Projection Chamber

- Electron amplification
- Tracking medium

\[Z = v_{\text{drift}} t \]
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

\[Z = v_{\text{drift}} t \]
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

Tracking medium

Electron amplification

$Z = v_{\text{drift}} t$
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

\[Z = v_{\text{drift}} t \]
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

Tracking medium

Electron amplification

$Z = v_{\text{drift}} t$
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

tracking medium

electron amplification

E

Z = \nu_{\text{drift}} t
AT-TPC CONCEPT

- Active-Target Time-Projection Chamber

tracking medium

electron amplification

\[Z = v_{\text{drift}} t \]
AT-TPC CONCEPT

- Imaging of charged particle tracks
- Active-target (target and tracking medium the same)
- Increase in luminosity (thick target)
- Good energy and angle resolution even at low-energy
- 4π acceptance of reaction products
- Low-intensity RIB’s
- Scan energy range
AT-TPC

We can measure:
- Angle
 - Tracking
- Energy, momentum
 - Bragg curve
 - B-rho analysis
- Cross Sections

- 1 m length, 50 cm diameter
- Electrons amplified using a Micromegas with 10,240 triangular pads
- Embedded in a 2T magnetic field for B-rho analysis
- Detector already commissioned with a ^4He beam in ReA3.

Event recorded during commissioning.
• Reaccelerated rare isotopes
• Lower energies, up to 3 MeV/n, 12 MeV/n
• Rates from $1 \cdot 10^3$ pps for more exotic beams
Table 1: Overview of the AT-TPC scientific program.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Physics</th>
<th>Beam Examples</th>
<th>Beam Energy (A MeV)</th>
<th>Min Beam (pps)</th>
<th>Scientific Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer & Resonant Reactions</td>
<td>Nuclear Structure</td>
<td>32Mg(d,p)33Mg, 26Ne(p,p)26Ne, 66,70Ni(p,p)</td>
<td>3</td>
<td>100</td>
<td>Kanungo</td>
</tr>
<tr>
<td>Astrophysical Reactions</td>
<td>Nucleosynthesis</td>
<td>25Al(3He,d)26Si</td>
<td>3</td>
<td>100</td>
<td>Famiano, Montes</td>
</tr>
<tr>
<td>Fusion and Breakup</td>
<td>Nuclear Structure</td>
<td>8B + 40Ar</td>
<td>3</td>
<td>1000</td>
<td>Kolata</td>
</tr>
<tr>
<td>Transfer</td>
<td>Pairing</td>
<td>56Ni + 3He</td>
<td>5-19</td>
<td>1000</td>
<td>Macchiavelli</td>
</tr>
<tr>
<td>Fission Barriers</td>
<td>Nuclear Structure</td>
<td>199,201Tl, 192Pt</td>
<td>20 - 60</td>
<td>10,000</td>
<td>Phair</td>
</tr>
<tr>
<td>Giant Resonances</td>
<td>Nuclear EOS, Nuclear Astro.</td>
<td>54,106Ni - 70,127Sn, 106Sn - 126Sn, 37,49Ca</td>
<td>50 - 200</td>
<td>50,000</td>
<td>Garg</td>
</tr>
<tr>
<td>Heavy Ion Reactions</td>
<td>Nuclear EOS</td>
<td>106Sn - 126Sn, 37Ca - 49Ca</td>
<td>50 - 200</td>
<td>50,000</td>
<td>Lynch</td>
</tr>
</tbody>
</table>
AKNOWLEDGEMENTS

- **AT-TPC Group**: Wolfgang Mittig, Daniel Bazin, Bill Lynch, Saul Beceiro-Novo, Adam Fritsch, Zach Kohley, Zach Meisel, Zbiniew Chajecki, Nathan Usher, Faisal Abu-Nimeh, John Yurkon, Fernando Montes

- **GET Collaboration**: CEA-Saclay, Bordeaux, GANIL, MSU

- **AT-TPC Collaboration**: Umesh Garg, Jim Kolata (Notre Dame), Daisuke Suzuki (IPN Orsay), I-Yang Lee, Larry Phair (LBNL), Mike Heffner (LLNL), Rituparna Kanungo (St. Mary’s), Michael Famiano (Western Michigan)

PUBLICATIONS

This work was supported by NSF MRI award PHY-0923087